HO_x and NO Observations during INTEX-A X. Ren J. Mao R. Long R. Lesher W. Brune Department of Meteorology Pennsylvania State University ## HO_x and NO measurement techniques ## OH and HO₂ measurements ATHOS — Airborne Tropospheric Hydrogen Oxides Sensor - Laser-induced fluorescence (LIF) detection of OH - Chemically convert HO₂ to OH by HO₂+NO followed by the detection of OH with LIF #### NO measurements TEI 42C NO-NO_x analyzer - Chemiluminescence - NO single mode - Online NO span and zero checks ### **Data Quality** Data coverage: ``` OH (1 min) - 97% HO₂ (1 min) - 95% NO (1 min) - 89% ``` Typical uncertainties: $$HO_x$$ ±32% (2σ) NO ±30% (2σ) Detection limits: ``` OH 0.01 pptv HO₂ 0.1 pptv NO 50 ppt ``` ## HO_x and NO observations (July 22, Flight 11) HO₂ and OH have good precision – sub-minute resolution will be used to examine variability. ### **Observed & PSS NO vertical profiles** The NO values between 2-6 km are around or below the NO detection limit (~50 pptv). - Median observed-to-modeled OH ~ 0.6 at all altitudes. - Median observed-to-modeled HO₂ ~ 0.8 up to 8 km. - Behavior is similar to that in TRACE-P. - Large observed-to-modeled OH in PBL correlates to isoprene (from Jim Crawford) as seen in forests. - NO_x in INTEX-A is greater than in TRACE-P & PEM TB; CO and O₃ are similar in INTEX-A & TRACE-P. - Observed-to-modeled HO₂/OH is close to 1 below 7 km, but exceeds 2 above ~9 km. - HO₂/OH deviations appear to be NO_x related. - Observed-to-modeled OH shows little NO_x-dependence. - Observed-to-modeled HO₂ grows for NO_x > few 100 pptv. - INTEX-A and TRACE-P dependences on NO_x are similar. - Observed-to-modeled HO₂ < 1 for NO_x < few 100 pptv & > 1 for NO_x > few 100 pptv is usually observed by us and a few others. ## HO_2 versus $(PHO_x)^{1/2}$ - $P(HO_x) = L(HO_x) \propto [HO_2]^2$, so $[HO_2] \propto sqrt \{P(HOx)\}$. - Much HO₂ variance can be explained by P(HO_x). ## HO_x observed & modeled comparisons - Solid line: 1:1; dashed lines: obs. uncertainty ±32%. - HO_x comparison similar to that in TRACE-P. ## **Modeled OH production and loss** Main P(OH) is O^1D+H_2O (below 5 km) and HO_2+NO (above 5 km). Main L(OH) is OH+CO/VOC. ### Modeled HO₂ production and loss Main $P(HO_2)$ is OH+CO. Main $L(HO_2)$ is HO_2-RO_2 self-reactions (below 5 km) & HO_2+NO (above 5 km). ## O₃ budget - Main $P(O_3)$: HO_2 +NO. - Main $L(O_3)$: O^1D+H_2O (< 5 km) & O_3+HO_2/OH (> 5 km). - Net O₃ loss at altitudes between 1 km and 5 km. ## Science questions we hope to answer - General comparisons between observed and modeled HO_x - Were previous observed-to-modeled anomalies also observed in INTEX-A? (e.g., NO_x-dependence of observed-to-modeled HO₂) - Can the HO_x heterogeneous effects (or lack thereof) be understood? - High speed photochemistry one-to-a-few seconds - What are the effects of scale on calculating P(O₃) from HO₂ & NO? - Is HO_x behavior understood in urban, forest-fire, and long-range regionally transported plumes? - HO_x behavior in the planetary boundary layer - What is the behavior of HO_x and P(O₃) and vertical distribution in the boundary layer? - Is isoprene chemistry in forested regions adequately understood? - Collaborations with many others on these & other questions.